Product Code Database
Example Keywords: sail -undershirt $48-114
barcode-scavenger
   » » Wiki: External Ray
Tag Wiki 'External Ray'.
Tag

An external ray is a that runs from infinity toward a or .J. Kiwi : Rational rays and critical portraits of complex polynomials. Ph. D. Thesis SUNY at Stony Brook (1997); IMS Preprint #1997/15. Although this curve is only rarely a half-line (ray) it is called a ray because it is an image of a ray.

External rays are used in , particularly in and geometric function theory.


History
External rays were introduced in and Hubbard's study of the


Types
Criteria for classification:
  • Plane: parameter or dynamic
  • Map
  • Bifurcation of dynamic rays
  • Stretching
  • Landing


Plane
External rays of (connected) on dynamical plane are often called dynamic rays.

External rays of the Mandelbrot set (and similar one-dimensional connectedness loci) on parameter plane are called parameter rays.


Bifurcation
Dynamic rays can be:
  • Bifurcated, branched, broken
  • Smooth, unbranched, unbroken

When the filled Julia set is connected, there are no branching external rays. When the Julia set is not connected then some external rays branch. Holomorphic Dynamics: On Accumulation of Stretching Rays by Pia B.N. Willumsen, see page 12


Stretching
Stretching rays were introduced by Branner and Hubbard: The iteration of cubic polynomials Part I : The global topology of parameter by BODIL BRANNER and JOHN H. HUBBARD Stretching rays for cubic polynomials by Pascale Roesch "The notion of stretching rays is a generalization of that of external rays for the Mandelbrot set to higher degree polynomials."


Landing
Every rational parameter ray of the Mandelbrot set lands at a single parameter. A. Douady, J. Hubbard: Etude dynamique des polynˆomes complexes. Publications math´ematiques d’Orsay 84-02 (1984) (premi`ere partie) and 85-04 (1985) (deuxi`eme partie).


Maps

Polynomials

Dynamical plane = z-plane
External rays are associated to a , full, subset K\, of the as :

External rays together with equipotential lines of Douady-Hubbard potential ( level sets) form a new polar coordinate system for exterior ( complement ) of K\,.

In other words the external rays define vertical which is orthogonal to horizontal foliation defined by the level sets of potential. POLYNOMIAL BASINS OF INFINITY LAURA DEMARCO AND KEVIN M. PILGRIM


Uniformization
Let \Psi_c\, be the from the complement (exterior) of the \overline{\mathbb{D}} to the complement of the filled Julia set \ K_c .

\Psi_c: \hat{\Complex} \setminus \overline{\mathbb{D}} \to \hat{\Complex} \setminus K_c

where \hat{\Complex} denotes the . Let \Phi_c = \Psi_c^{-1}\, denote the Boettcher map. How to draw external rays by Wolf Jung \Phi_c\, is a uniformizing map of the basin of attraction of infinity, because it conjugates f_c on the complement of the filled Julia set K_c to f_0(z)=z^2 on the complement of the unit disk:

\begin{align}
\Phi_c: \hat{\Complex} \setminus K_c &\to \hat{\Complex} \setminus \overline{\mathbb{D}}\\
z & \mapsto \lim_{n\to \infty} (f_c^n(z))^{2^{-n}}
     
\end{align}

and

\Phi_c \circ f_c \circ \Phi_c^{-1} = f_0

A value w = \Phi_c(z) is called the Boettcher coordinate for a point z \in \hat{\Complex}\setminus K_c.


Formal definition of dynamic ray
The external ray of angle \theta\, noted as \mathcal{R}^K _{\theta} is:
  • the image under \Psi_c\, of straight lines \mathcal{R}_{\theta} = \{\left(r\cdot e^{2\pi i \theta}\right) : \ r > 1 \}

\mathcal{R}^K _{\theta} = \Psi_c(\mathcal{R}_{\theta})

  • set of points of exterior of filled-in Julia set with the same external angle \theta

\mathcal{R}^K _{\theta} = \{ z\in \hat{\Complex} \setminus K_c : \arg(\Phi_c(z)) = \theta \}


Properties
The external ray for a periodic angle \theta\, satisfies:

f(\mathcal{R}^K _{\theta}) = \mathcal{R}^K _{2 \theta}

and its landing point \gamma_f(\theta) satisfies:

f(\gamma_f(\theta)) = \gamma_f(2\theta)


Parameter plane = c-plane
"Parameter rays are simply the curves that run perpendicular to the equipotential curves of the M-set." Douady Hubbard Parameter Rays by Linas Vepstas

Uniformization
Let \Psi_M\, be the mapping from the complement (exterior) of the \overline{\mathbb{D}} to the complement of the \ M . John H. Ewing, Glenn Schober, The area of the Mandelbrot Set

\Psi_M:\mathbb{\hat{C}}\setminus \overline{\mathbb{D}}\to\mathbb{\hat{C}}\setminus M

and Boettcher map (function) \Phi_M\,, which is uniformizing map Irwin Jungreis: The uniformization of the complement of the Mandelbrot set. Duke Math. J. Volume 52, Number 4 (1985), 935-938. of complement of Mandelbrot set, because it complement of the \ M and the complement (exterior) of the

\Phi_M: \mathbb{\hat{C}}\setminus M \to \mathbb{\hat{C}}\setminus \overline{\mathbb{D}}

it can be normalized so that :

\frac{\Phi_M(c)}{c} \to 1 \ as\ c \to \infty \, Adrien Douady, John Hubbard, Etudes dynamique des polynomes complexes I & II, Publ. Math. Orsay. (1984-85) (The Orsay notes)

where :

\mathbb{\hat{C}} denotes the

Jungreis function \Psi_M\, is the inverse of uniformizing map :

\Psi_M = \Phi_{M}^{-1} \,

In the case of complex quadratic polynomial one can compute this map using about Weisstein, Eric W. "Mandelbrot Set." From MathWorld--A Wolfram Web Resource

c = \Psi_M (w) = w + \sum_{m=0}^{\infty} b_m w^{-m} = w -\frac{1}{2} + \frac{1}{8w} - \frac{1}{4w^2} + \frac{15}{128w^3} + ...\,

where

c \in \mathbb{\hat{C}}\setminus M

w \in \mathbb{\hat{C}}\setminus \overline{\mathbb{D}}


Formal definition of parameter ray
The external ray of angle \theta\, is:
  • the image under \Psi_c\, of straight lines \mathcal{R}_{\theta} = \{\left(r*e^{2\pi i \theta}\right) : \ r > 1 \}

\mathcal{R}^M _{\theta} = \Psi_M(\mathcal{R}_{\theta})

\mathcal{R}^M _{\theta} = \{ c\in \mathbb{\hat{C}}\setminus M : \arg(\Phi_M(c)) = \theta \}


Definition of the Boettcher map
Douady and Hubbard define:

\Phi_M(c) \ \overset{\underset{\mathrm{def}}{}}{=} \ \Phi_c(z=c)\,

so external angle of point c\, of parameter plane is equal to external angle of point z=c\, of dynamical plane

====External angle====

Angle is named external angle ( argument ).http://www.mrob.com/pub/muency/externalangle.html External angle at Mu-ENCY (the Encyclopedia of the Mandelbrot Set) by Robert Munafo

of external angles are measured in turns 1

1 turn = 360 degrees = 2 ×

Compare different types of angles :

  • external ( point of set's exterior )
  • internal ( point of component's interior )
  • plain ( argument of complex number )

! external angle ! internal angle ! plain angle


Computation of external argument


Transcendental maps
For transcendental maps ( for example exponential ) infinity is not a fixed point but an essential singularity and there is no Boettcher isomorphism. Topological Dynamics of Entire Functions by Helena Mihaljevic-Brandt Dynamic rays of entire functions and their landing behaviour by Helena Mihaljevic-Brandt

Here dynamic ray is defined as a curve :


Images

Dynamic rays
JuliaRay 1 3.png|Julia set for f_c(z) = z^2 -1 with 2 external ray landing on repelling fixed point alpha JuliaRay3.png|Julia set and 3 landing on fixed point \alpha_c\, Dynamic internal and external rays .svg|Dynamic external rays landing on repelling period 3 cycle and 3 internal rays landing on fixed point \alpha_c\, Julia-p9.png|Julia set with external rays landing on period 3 orbit Parabolic rays landing on fixed point.ogv|Rays landing on parabolic fixed point for periods 2-40

Dynamical plane with branched periodic external ray 0 for map f(z) = z*z + 0.35.png| Branched dynamic ray


Parameter rays
for complex quadratic polynomial with parameter rays of root points

File:Mandelbrot set for complex quadratic polynomial with parameter rays of root points.jpg|External rays for angles of the form : n / ( 21 - 1) (0/1; 1/1) landing on the point c= 1/4, which is cusp of main cardioid ( period 1 component) Image:Man2period.jpg|External rays for angles of the form : n / ( 22 - 1) (1/3, 2/3) landing on the point c= - 3/4, which is root point of period 2 component Image:Man3period.jpg|External rays for angles of the form : n / ( 23 - 1) (1/7,2/7) (3/7,4/7) landing on the point c= -1.75 = -7/4 (5/7,6/7) landing on the root points of period 3 components. Image:Man4period.jpg|External rays for angles of form : n / ( 24 - 1) (1/15,2/15) (3/15, 4/15) (6/15, 9/15) landing on the root point c= -5/4 (7/15, 8/15) (11/15,12/15) (13/15, 14/15) landing on the root points of period 4 components. Image:Man5period.jpg| External rays for angles of form : n / ( 25 - 1) landing on the root points of period 5 components

of the complex exponential family f(z)=exp(z)+c. Eight parameter rays landing at this parameter are drawn in black.


Programs that can draw external rays


See also
  • external rays of Misiurewicz point
  • Periodic points of complex quadratic mappings
  • Prouhet-Thue-Morse constant
  • Carathéodory's theorem
  • Field lines of Julia sets


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
3s Time